Texas Technology Showcase

Troy Bearden
Energy System's Process Leader
The Dow Chemical Company
tbearden@dow.com

Agenda

- Why Economic Optimizers
- Opportunities
- Justification
- Developing Specifications
- Implementation
- Key Learnings
- Future Direction

Why Economic Optimizers

- Optimizers can display understandable results from large quantities of data
 - Changing efficiencies or demands
 - Variations in stream composition or prices
- Optimizers continually monitor economic cost
 - It is not always the most efficient operating point that yields the most revenues
- Efficiency
 - Efficient operations is no longer a competitive advantage, it is a requirement to stay in business

Opportunities

Economic Optimizers are not needed for every operation – they are best suited when there are:

- Choices between multiple equipment that delivers similar products
 - Changing efficiencies
 - Changing demands
- Changing values for inputs and outputs
 - Variations in fuel composition and prices
 - Variations in electricity, fuel and steam prices
- Tight operating constraints
 - Equipment limitations
 - Environmental constraints

Justification

- It is very difficult to justify your first Economic Optimizer
- Typical questions when trying to justify Economic Optimizers.
 - How do you know how much will we save?
 - Are my savings sustainable?
 - How can we prove the savings before implementation?
 - How much will the Economic Optimizers cost (installation and maintenance)?
 - What is the right technology for our company?
 - How complicated does the Economic Optimizer need to be?
 - Where do we start?

Justification

- Defining the savings
 - Savings before implementation are hard to quantify
 - Past Economic Optimizer savings
 - Studies
 - Estimated efficiency gains
 - Percent of fuel savings

- Study the opportunity
 - Engage key stakeholders in developing the specification
 - Determine the drivers for economic gain
 - Equipment efficiencies (degradation or loading)
 - Fuel or product price changes
 - Equipment selection
 - Determine how many variables can be manipulated for economic gain
 - Define your economic objective

- Determine level of complexity
 - Varies based on the problem
 - Spreadsheets can be used if economic drivers don't frequently change
 - Stable or predictable inputs
 - Contract pricing
 - Simple problems can utilize linear programs in Pl system
 - Few economic drivers
 - Few manipulated variables
 - Linear program gets you 80% of the value
 - The greater the manipulated variables, interaction between variables, or inputs the more complex the Economic Optimizer will need to be
 - Integration with control system will also increase the complexity
 - Open-loop versus closed-loop

- Determine level of complexity (cont)
 - Varies based on detail of output
 - Detailed control variable setpoints versus overall equipment load
 - Efficiency details versus no efficiency calculations
 - Plant loading curves versus no plant loading information

- Define the needs and wants of the Economic Optimizer
- Determine if your process information (PI) system has the required information
 - If fuel composition is an economic driver the PI system will need composition inputs
 - If external prices (ERCOT) is the economic driver the PI system will need external price inputs

- Technology selection
 - Determine if technology package meets the needs and wants for the Economic Optimizer
 - Limitations due to using company standard technology
 - Computer systems
 - Software packages
 - Internal or external support
 - Is the purchased technology more than what is needed
 - Too much complexity will cause higher maintenance costs
 - Easy to use and maintain
 - Reliability
 - Runtime

- Costs associated with Economic Optimizers
 - Design and installation
 - Programming
 - Data handling
 - Computers
 - Increased inputs
 - Training and documentation

- Costs associated with Economic Optimizers
 - Maintenance
 - Updating the constraints
 - Updating the models
 - Quality of the input (data validation is critical)
 - Better maintenance of instruments that are not normally critical for control
 - Quality of the output (repeatable results)
 - Software obsolescence

- Costs associated with Economic Optimizers
 - Value Creation
 - Track savings and opportunity gap
 - Monitor key performance indicators
 - Report generation
 - Refresher training
- Economic Optimizers will require at least one part-time employee for normal maintenance and value creation

- Ease of use
 - Key stakeholders need easy to read displays
 - Operations needs to easily detect problems with models

- Tracking savings
 - It is critical to the success of any economic optimizer
 - Tracking savings
 - Typical tracking methods
 - Current operating cost versus baseline (adjusted for fuel price variations)
 - Difference between current and optimal operation (opportunity gap)
 - Optimizer run time or online time

Key Learnings

- It is critical to understand the opportunity
 - Scope of job
 - Objectives of optimizer
 - Boundaries of control

Key Learnings

- People resources need to be dedicated to increasing stakeholder involvement
 - Instrument technicians
 - Instruments that may not have been critical are now important for operations
 - Reports of bad instruments
 - Operations
 - Need to monitor and troubleshoot problems
 - Training
 - Developing tools that increase ease of use
 - Need a dedicated champion to sustain savings

Key Learnings

- Savings need to be publicized for all stakeholders
- Open-loop optimizers need to have more detailed models for successful operation
 - Constraint driven
- More complex does not mean more reliable

Future Direction

- Dow is committed to continued use and integration of Economic Optimizers
 - Dow currently has 4 closed-loop and multiple open-loop Economic Optimizers in the Energy Business
 - Committed to a new optimizer at a Gulf Coast site
 - Evaluating potential of adding Economic
 Optimizers at other large energy intensive sites globally
 - Increased integration in operating discipline and control systems (closed-loop operation)
 - Increased integration with suppliers and customers
 - Part of the Energy Conservation Effort

Texas Technology Showcase

Troy Bearden
Energy System's Process Leader
The Dow Chemical Company
tbearden@dow.com

